
5-24-06 Notes
Glenn Takanishi

Context Path Traversal
in RDF Graphs

1 Introduction

 One of the main problems of finding patterns in textual information is isolating the
context[1] in which each sentence is expressed. Isolating context is a constantly
occurring problem when reading, querying and making inferences in textual data. A
semantic network[2] is constructed so that each word in the network gets its meaning
from its association with other words in its neigborhood proximity.

In the semantic network model, the relative positions of RDF triples[3] with respect to
each other in the network defines what each triple is. The context in which a triple is
defined depends on the other triples in its local neigborhood. Context can further be
determined by interpreting reference markers for each triple when traversing paths
the graph network.

This notion that the contexts will reveal itself as one dynamically traverses the
network structures is important for making inferences. This essential feature of a
query language is not explicitly implemented in SPARQL using explicit schemas, or
recursive or nested forward and backtracking search algorithms. Instead, since
SPARQL performs pattern matching on graphs or subgraphs, we essentially have to
do “path navigation” by refining the pattern matching process submitting better input
graphs by “trial-and-error” so to speak. This strategy keeps the algorthmic processes
simple.

There are pros and cons to this: If you know what you want to query for, okay.
However, if the you're seeking to discover patterns you cannot be expected to
foresee, then maybe using a heuristically guided search strategy is better. These
issues are related to using the semantic network software which helps in generating
“context paths.” These software will have the effect of limiting the scope of the
selection paths.

2 Context Nodes

 A triple (s, p, o) is a directed link between two nodes in a network. A set of triples
makes a graph. In the mechanics of navigating or traversing graphs, it's important to
understand how much information which determines the traversal paths are missing .
The meaning of each isolated triple maybe ambigous because it can have multiple
meanings. So traversible graph paths depends not only on the relative positions of
the triples in the graph network, but on something more called context4 .

 In the RDF data model's indexing architecture, context is defined within a pair (t, c)
where t = (s, p, o) triple, and c is a node (URI reference or literal) in RDF space. The
context in RDF space may also be defined as a named subgraphs which is itself

composed of a set of triples. The context is a coordinate in the graph.

2.1 Example Query

 SPARQL can query multiple named graphs in one query. The following query finds
people described in two named FOAF graphs.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?name
FROM NAMED <phil-foaf.rdf>
FROM NAMED <jim-foaf.rdf>
WHERE {
 GRAPH <phil-foaf.rdf> {
 ?x rdf:type foaf:Person .
 ?x foaf:name ?name .
 } .
 GRAPH <jim-foaf.rdf> {
 ?y rdf:type foaf:Person .
 ?y foaf:name ?name .
 } .
}

 I could not get the exact form of the query above to work using Redland's Rasqal
query tool. However, a simpler form [figure 1] worked. The RDF graphs phil-foaf.rdf
and jim-foaf.rdf were downloaded from different web sites, but both contained the
name and mbox-sha1sum field types.

A query can use named graphs as pattern matching templates against the search
data. The following query[1] from Philip McCarthy's article show a named query used
as a template on RSS data.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rss: <http://purl.org/rss/1.0/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title ?known_name ?link
FROM <http://planetrdf.com/index.rdf>
FROM NAMED <phil-foaf.rdf>
WHERE {
 GRAPH <phil-foaf.rdf> {
 ?me foaf:name "Phil McCarthy" .
 ?me foaf:knows ?known_person .
 ?known_person foaf:name ?known_name .
 } .
 ?item dc:creator ?known_name .
 ?item rss:title ?title .
 ?item rss:link ?link .
 ?item dc:date ?date.
}

ORDER BY DESC[?date] LIMIT 10

Figure 2. The RDF Graph Model

3. Path Expression

One thing to note in this XML record is the rdf type xml:base which is the name of
the text document on our local computer.

The graph database only accepts RDF triples. The XML-RDF record above needs to be
serialized, that is, separated into individual triples, before the data record can be
handed to the RDF store. I used Dave Beckett's Raptor program, specifically rapper,
to serialize the file. The output below shows the triples in N3 format. You can see
references to the document URI file name in the first column below.

rapper: Parsing file test2.rdf
<http://localhost/textdata/simple.txt#x0001> <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://localhost/ontology/descriptor#Type-Triple> .
<http://localhost/textdata/simple.txt#x0001>
<http://localhost/ontology/descriptor#subject> "this" .
<http://localhost/textdata/simple.txt#x0001>
<http://localhost/ontology/descriptor#predicate> "is" .
<http://localhost/textdata/simple.txt#x0001>
<http://localhost/ontology/descriptor#object> "test" .
<http://localhost/textdata/simple.txt#x0002> <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://localhost/ontology/descriptor#Type-Chunk> .
<http://localhost/textdata/simple.txt#x0002>
<http://localhost/ontology/descriptor#noun> "emergency broadcast system" .
rapper: Parsing returned 6 statements

We can feed this output directly into the Redland RDF store, and run SPARQL queries
to get answers.

Comments

The beauty of using the graph model is that almost any kind of unstructured data can
be represented relatively easily. For example, you could annotate or tag picture
images or music sound files with RDF atoms. In principle, one could easily mix
imagery metadata information with our text metadata. It would all get linked into
graphs.

References

1. RDF Semantics: W3C Recommendation 10 February 2004;
http://www.w3.org/TR/2004/REC-rdf-mt- 20040210/

2. M. Ross Quinlan, Semantic Memory; 1968, Semantic Information Processing, M.
Minsky (ed), 216-260, MIT Press

3. Web and Semantic Web Query Languages: A Survey:
 http://www.pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2005-14-slides.html

Appendix

SPARQL – RDF Query Language

After a couple of years in which different query languages for RDF data have been
developed in parallel, the W3C has launched a working group on RDF Data Access
with the purpose of defining a standard query language and a protocol for accessing
RDF data. Meanwhile first versions of working drafts on both aspects are available
from the W3C homepage. In the following, we concentrate on the proposed query
language called SPARQL and briefly discuss the design choices made by the working
group with respect to the above mentioned aspects of RDF query languages.

A first observation that we have to make about SPARQL is that it explicitly excludes a
number of features that can be found in other RDF query languages. The most
obvious restriction of the language is that it currently does not address for reasoning.
The semantics of RDF schema as well as the use of rules are considered to be out of
the scope of the current work on SPARQL. This decision is unfortunate as the ability to
define and reason about schema information is an important aspect of semantic web
data. On the other hand, it is understandable, that this initial effort for defining a
standard focuses on the basic graph matching issue and technicalities around the use
of the language. In the following, we will briefly introduce the way SPARQL allows the
user to specify graph patterns to be matched against an RDF model and mention
some additional features that have been included to address real world problems.
The general structure of a SPARQL Query is similar to the one of many previous SQL-
like RDF query languages. In particular, a SPARQL query consists of the following
main elements:

PREFIX: In this first part of a query abbreviations for name spaces can be defined to
improve readability in the following parts.
SELECT: In the second part of the query, the return variables and structures are

http://www.w3.org/TR/2004/REC-rdf-mt-
http://www.pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2005-14-slides.html
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

specified.
WHERE: The final part specifies constraints on the return variables in terms of a graph
pattern and constraints on values in the matched graph

In the following, we will have a closer look at the WHERE part of SPARQL queries and
the different ways in which constraints can be formulated. Further, we will briefly
discuss two other constructs that are used to return results different from a simple
variable binding.
Matching Graph Structures
The SPARQL approach to describing graph patterns clearly follows the triple-centered
approach. Single RDF statements are represented by triple patterns that consist of a
sequence of three terms that either refer to identifiers of resources or are marked as
variables by an initial question mark. Triple patterns are delimited by a dot.
Statements can be grouped using brackets. The query below shows a simple example
of a query for names of people and their mailboxes.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE
 { ?x foaf:name ?name .
 ?x foaf:mbox ?mbox }

In order to reduce redundancy in the graph patterns, the language introduces a
shorthand notation for triples with the same subject and for triples with the same
subject and the same predicate. The following are examples of this shorthand
notation where the original statement is on the left and the shorthand notation on the
right-hand side.

?x foaf:name ?name .
?x foaf:mbox ?mbox .

?x foaf:name ?name ;
 foaf:mbox ?mbox

?x foaf:nick "Alice" .
?x foaf:nick "Alice_" .

?x foaf:nick "Alice" , "Alice_" ..

In SPARQL, blank nodes are in general represented by an empty set of brackets. In
order to reduce the size of the query expression, in cases where the blank node is the
subject of a triple, the brackets can also be drawn around the predicate and the
object to indicate, that the subject is not specified. This shorthand notation can also
be combined with other abbreviations, e.g. in cases where several statements refer to
the same blank node. The following example illustrates this case. Again the original
expression is shown on the left hand and the abbreviation on the right hand side.

[] foaf:name ?name .
[] foaf:mbox <alice@example.org>

[foaf:name ?name ;
 foaf:mbox <alice@example.org>]

Special attention is paid to the flexible nature of RDF data. In particular, the language
allows us to specify optional parts of a graph structure. Parts of the query expression
can be marked with the prefix OPTIONAL indicating that the following group of
statements in optional. This option block normally contains return variables. These
are returned if the optional part can be found in the source data. If it is not found, the

graph is still assumed to match the data, but no values are returned for the
respective variables. The following query for example returns the names of people
and their mailbox if they have one.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?mbox }}

In addition to optional parts in query expressions, the language also allows to define
alternative representations of the same data in terms of UNION queries.
Matching Literals
As discussed above, the second aspect of matching RDF data is the matching of labels
in the RDF graph. In the last section, we already discussed the use of resource
identifiers in triple patterns. SPARQL also allows the use of literals and datatype
values in triple patterns. The following query retrieves the subjects of all triples in
which the object is the integer value 42.

SELECT ?v WHERE { ?v ?p 42 }

This way of representing datatypes just by a value is actually a shortcut for a more
elaborated representation that consists of the value and information about the
corresponding datatype. The complete version of the above query is the following.
SELECT ?x WHERE { ?x ?p "42"^^xsd:integer }

Besides this way of using datatype values that enforce an exact match, SPARQL also
contains elements for defining constraints of a particular datatype value in the query
expression. These constraints are identified by the keyword “FILTER” and can consist
of complex arithmetic expressions over the corresponding datatype. In the current
version the language defines operators for Boolean expressions, numerical values,
strings, dates and variables. Further, the language specification contains casting
operators for certain datatypes. The query below is a simple example of a query that
returns the price and the title of items that have a price of less than 30.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE { ?x ns:price ?price .
 FILTER ?price < 30 .
 ?x dc:title ?title . }

Together with the ability to define flexible graph patterns, this provides a quite
powerful language for matching RDF on the data level without considering the
schema.
Alternative Query Modes
While the use of the SELECT construct to determine bindings for a set of query
variables is the standard use for SPARQL, the language also has other modes of use.
In particular, the current version of the specification makes provisions for two kinds of
alternative uses. The first is the use as a transformation language. In this mode, the
SELECT part of the query is replaced by a CONSTRUCT part that specifies an RDF
Data structure to be filled with values bound to return variables. For each matching

combination of values, the RDF structure is instantiated and stored as part of the
result. In this way RDF data can be transformed from one structure to another. The
example below describes a query that transforms FOAF data into the vcard format.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { ?x vcard:N _:v .
 _:v vcard:givenName ?gname .
 _:v vcard:familyName ?fname }
WHERE
 {
 { ?x foaf:firstname ?gname } UNION { ?x foaf:givenname ?gname } .
 { ?x foaf:surname ?fname } UNION { ?x foaf:family_name ?fname } .
 }

The second alternative way of using the language is to ask yes/no questions. In this
case, the query expression that would normally be in the WHERE part of the query is
used in combination with the keyword ASK. Such a query returns ‘true’ if the query
expression could be matched with the data. Otherwise the query returns ‘false’. The
query below asks if there is a person called Alice that has a particular email address.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" ;
 foaf:mbox <mailto:alice@work.example> }
Multiple Graphs
An aspect that has been neglected in most previous proposals is the ability to query
data from multiple RDF graphs. In the se previous languages, often the only way of
distinguishing different sources of information was in terms of namespaces. As
different models, are often using the same namespace, this is not a satisfactory
solution to the problem of distinguishing sources. SPARQL addresses this problem by
providing the possibility to explicitly refer to named sources using the keyword
GRAPH. In this case the sub-expression that refers to a certain graph is grouped in a
block. The query below shows an example where data from two different FOAF files is
combined in the query:
 SELECT ?mbox ?age ?ppd
WHERE
{
 GRAPH data:aliceFoaf
 {
 ?alice foaf:mbox <mailto:alice@work.example> ;
 foaf:knows ?whom .
 ?whom foaf:mbox ?mbox ;
 rdfs:seeAlso ?ppd .
 ?ppd a foaf:PersonalProfileDocument .
 } .
 GRAPH ?ppd
 {
 ?w foaf:mbox ?mbox ;
 foaf:age ?age
 }

}

